Contacts of Water Ice in Protoplanetary Disks—Laboratory Experiments
نویسندگان
چکیده
منابع مشابه
Formation of Water in the Warm Atmospheres of Protoplanetary Disks
The gas-phase chemistry of water in protoplanetary disks is analyzed with a model based on X-ray heating and ionization of the disk atmosphere. Several uncertain processes appear to play critical roles in generating the column densities of warm water that are detected from disks at infrared wavelengths. The dominant factors are the reactions that form molecular hydrogen, including formation on ...
متن کاملPyroelectricity of water ice.
Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films...
متن کاملSputtering of water ice
We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from the decay of H(2p) atoms sputtered by heavy ion impact, but not bulk ice luminescence. Radiolyzed ice do...
متن کاملWater ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme
[1] We present the first comprehensive general circulation model study of water ice condensation and cloud formation in the Martian atmosphere. We focus on the effects of condensation in limiting the vertical distribution and transport of water and on the importance of condensation for the generation of the observed Martian water cycle. We do not treat cloud ice radiative effects, ice sedimenta...
متن کاملRotational Line Emission from Water in Protoplanetary Disks
Circumstellar disks provide the material reservoir for the growth of young stars and for planet formation. We combine a high-level radiative transfer program with a thermal-chemical model of a typical T Tauri star disk to investigate the diagnostic potential of the far-infrared lines of water for probing disk structure. We discuss the observability of pure rotational H2O lines with the Herschel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2019
ISSN: 1538-4357
DOI: 10.3847/1538-4357/ab0428